Editorial: Charged Particles in Oncology

نویسندگان

  • Marco Durante
  • Francis A. Cucinotta
  • Jay S. Loeffler
چکیده

High-energy charged particles represent a cutting-edge technique in radiation oncology (1). Protons and carbon ions are used in several centers all over the world for the treatment of different solid tumors. Typical indications are ocular malignancies, tumors of the base of the skull, hepatocellular carcinomas, and various sarcomas (2). The physical characteristics of the charged particles (Bragg peak) allow sparing of much more normal tissues than it is possible using conventional X-rays (3), and for this reason, all pediatric tumors are considered eligible for proton therapy (4). Ions heavier than protons also display special radiobiological characteristics, which make them effective against radioresistant and hypoxic tumors (5). Protons and ions with high charge (Z) and energy (HZE particles) represent a major risk for human space exploration (6, 7). The main late effect of radiation exposure is cancer induction (8), and at the moment the dose limits for astronauts are based on lifetime cancer mortality risk (9, 10). The Mars Science Laboratory measured the dose on the route to Mars (11) and on the planet’s surface (12), supporting predictions that a human exploration mission to Mars will exceed the radiation risk limits (7, 13). Notwithstanding many studies on carcinogenesis induced by protons and heavy ions, the risk uncertainty remains high with important risk assessment questions to non-targeted effects (13) and the “quality” of HZE particle-induced tumors compared to spontaneous and photon-induced tumors (8). In this research topic, we invited scientists studying high-energy charged particles either for cancer treatment or for space radiation protection. We believe that space radiation protection and particle therapy share many common problems, and this research topic can be an inspiration to find applications and answers from fields that are apparently far away. Physics, biology, and medical contributions in this field will be found in the volume, owing to the fact that the field of charged particles in oncology is highly interdisciplinary. The research topics accepted 59 articles including a total of 351 authors, demonstrating the high interest in this field. It is in the top five most viewed research topics of this journal. The articles can be divided into the following topics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An approximate analytical solution of the Bethe equation for charged particles in the range of radiotherapy energy

Charged particles such as protons and carbon ions are an increasing tool in radiation therapy. However, unresolved physical problems prevent optimal performance, including estimating the deposited dose in non-homogeneous tissue, is an essential aspect of optimizing treatment. The Monte Carlo (MC) method can be used to estimate the amount of radiation, but, this powerful computing operation is v...

متن کامل

Comparison of the Light Charged Particles on Scatter Radiation Dose in Thyroid Hadron Therapy

Bachground: Hadron therapy is a novel technique of cancer radiation therapy which employs charged particles beams, 1H and light ions in particular. Due to their physical and radiobiological properties, they allow one to obtain a more conformal treatment, sparing better the healthy tissues located in proximity of the tumor and allowing a higher control of the disease.  Objective: As it is well ...

متن کامل

The biological effects induced by high-charged and energy particles and its application in cancer therapy

The radiobiological effects of high atomic number and energy (HZE particles) ion beams are of interest for radioprotection in space and tumor radiotherapy. Space radiation mainly consists of heavy charged particles from protons to iron ions, which is distinct from common terrestrial forms of radiation. HZE particles pose a significant cancer risk to astronauts on prolonged space missions. With ...

متن کامل

Compare charged and uncharged particles leakage of plasma focus for medical radioisotopes production

In this study, to calculate the radioactivity of radioisotopes such as 11C, 15O, 18F and 123,124I in a focus plasma device for the production of medical radioisotopes, the particles of neutrons and protons with cubic targets of Nitrogen, Xenon, Carbon and a solid natural Boron is used. Particles energy are at the input of the program from 1MeV to 10MeV. Also, the total yield coefficient is cons...

متن کامل

Investigation of Charged Particles Radiation Moving in a Homogeneous Dispersive Medium (TECHNICAL NOTE)

In this work, we use Drude-Lorents model description to study the radiation of a charged particles moving in a homogeneous dispersive medium. A suitable quantized electromagnetic field for such medium is utilized to obtain proper equations for energy loss of the particle per unit length. The energy loss is separately calculated for transverse and longitudinal components of the filed operators. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017